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ABSTRACT
In data exploration, users need to analyze large data files quickly,
aiming to minimize data-to-analysis time. While recent adaptive
indexing approaches address this need, they are cases where demon-
strate poor performance. Particularly, during the initial queries, in
regions with a high density of objects, and in very large files over
commodity hardware. This work introduces an approach for adaptive
indexing driven by both query workload and user-defined accuracy
constraints to support approximate query answering. The approach is
based on partial index adaptation which reduces the costs associated
with reading data files and refining indexes. We leverage a hierarchi-
cal tile-based indexing scheme and its stored metadata to provide
efficient query evaluation, ensuring accuracy within user-specified
bounds. Our preliminary evaluation demonstrates improvement on
query evaluation time, especially during initial user exploration.
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1 INTRODUCTION
In data exploration, users often need to interact with and analyze
large data files without the hassle of full-fledged database config-
uration and lengthy data loading and indexing times. A common
objective in such scenarios is to minimize the data-to-analysis time
while ensuring efficient visual exploration and analytical operations.

In such exploration scenarios, users might not always require
exact results. There are interactive scenarios where response time
is more crucial than result accuracy [6, 9, 14, 16, 18, 20]. Several
visual analytic tasks, such as class or outlier analysis in scatterplots,
pair-wise comparison of spatial areas on maps, usually start with
approximate aggregated insights, which can be used by the experts
to quickly identify specific areas in the exploration space for further
analysis. Approximate query processing (AQP) is a long-studied
problem in the areas of databases and information visualization;
however, there is a missing gap when AQP is coupled with the
in-situ paradigm.

In-situ paradigm has been adopted for data exploration, enabling
on-the-fly analysis of large raw data sets such as CSV or JSON
files [2, 3, 11, 13]. In-situ techniques aim to bypass the overhead of
fully loading and indexing data in a DBMS while offering efficient
query evaluation over the raw data files. Previous works on the
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visual exploration of raw data files [3, 11] have focused on building
adaptive indexes over the raw data objects. These methods leverage
the locality-based behaviour of visual exploration, in which the user
explores a specific area in the data space, gradually widening the
analysis in neighboring areas. Thus, they seek to minimize index
initialization time by initially creating a "crude" version of the index,
e.g., around the initial area of interest, dynamically extending and
adapting it based on user exploration.

However, since the initial index is only a "crude" version, initial
queries can be slower as the index adapts and refines based on user
exploration. Additionally, for very large raw data files or regions
with a high density of objects, even an index that has sufficiently
adapted can result in significant query times, thus compromising
interactivity.

Considering these challenges, our goal is to reduce response time
by providing approximate results and performing “partial” index
adaptation. Partial index adaptation allows us to reduce the costs
associated with reading the raw data file (i.e., I/O cost) and refining
the index, e.g., recomputing metadata, reorganizing objects.

Contribution. In this paper we provide our ongoing work and pre-
liminary results on the problem of adaptive indexing driven by both
the query workload and the accuracy constraints set by the user.
Particularly, given an accuracy constraint we attempt to reduce the
response time, by performing a minimum number of adaptations
(and consequence the I/O’s) such as the result’s accuracy is larger
than a threshold. The proposed methods are going to be integrated to
our RawVis framework1 [3, 10, 11], supporting approximate query
answering via partial index adaptation.

Related Work. In visual analytics, approximate processing tech-
niques (a.k.a. data reduction), such as sampling and binning, have
been used to improve efficiency and address the visual information
overloading problem [6, 9, 14, 15, 20]. Recent works also consider
visualization parameters to ensure perceptually similar visualiza-
tions and offer visualization-aware error guarantees [12]. Further,
progressive visualization approaches perform computations in small,
incremental steps, providing users with progressively improving
approximate results [1, 16–19]. In contrast, we focus on implement-
ing an adaptive indexing scheme for approximate query answering.
Adaptive indexing techniques dynamically adjust indexes based on
query workloads to optimize data access [2–5, 7, 11, 13, 21]. Com-
pared to our work, these studies are based on exact query answering.

Recent techniques for AQP, which combine pre-computed aggre-
gates and data sampling to facilitate interactive analysis, are similar
to our work but in a different context [8, 15]. However, these ap-
proaches neither utilize adaptive indexing to support efficient query
evaluation over large data files nor dynamically adjust the granular-
ity of their pre-computed aggregates to accommodate the dynamic
nature of data exploration scenarios. In contrast, our work leverages

1The source code is available at https://github.com/VisualFacts/RawVis
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an adaptive index and pre-computed aggregates to perform in-situ
adaptive indexing with error-bound guarantees. Additionally, we
allow for “partial” index adaptation to reduce associated costs while
considering the user’s accuracy constraints.

2 FRAMEWORK OVERVIEW
2.1 Exploration Model
In our scenario, we consider a user visually exploring data stored in
a file (e.g., CSV file) using a 2D visualization technique (e.g., map,
scatter plot), and analyzing it using visual tools (e.g., bar and line
charts, heatmaps) as well as aggregate and statistical measures (e.g.,
mean, Pearson correlation) [10]. The data attributes may be numeric,
spatiotemporal, categorical, or textual. At least two of these attributes
must be numeric (e.g., longitude, latitude) and can be mapped to the
X and Y axes of the 2D visualization (axis attributes).

Our framework is based on a formal exploration model that de-
fines a set of exploratory and analytic operations to formulate user
interactions [11]. It implements basic exploration operations over
a 2D visualization plane, such as pan, zoom, filter, view object
details, and selection of objects by defining 2D areas (i.e., range
queries) over the visualized objects. Beyond exploratory operations,
the model defines analytic operations that allow the user to visually
analyze the objects by generating several types of visualizations that
can aggregate, compare, or provide statistics on data properties.

2.2 Indexing Scheme
For the sake of simplicity, we describe the basic idea of our methods
over the hierarchical tile-based VALINOR index (referred as index)
[3], which is a simplified version of our VETI index [11].2

The index is stored in main memory and organizes the data objects
into hierarchies of non-overlapping rectangle tiles. The index’s tiles
are defined over the domains of axis attributes. Each tile is associated
with metadata (e.g., average, sum, count) that enables statistics
computations. Particularly, metadata are numeric values calculated
by algebraic aggregate functions over one or more attributes of the
objects.

Consider the example where the 2D canvas is a map, the data
points are hotels with ratings and their location on the map is given
by the longitude and latitude values. Figure 1 (a) presents an example
of the basic structure of an index, which divides the 2D space into
3 × 3 equally sized disjoint tiles (𝑡1∼𝑡4), where the tile 𝑡4 is further
divided into 2× 2 subtitles (𝑡4𝑎∼𝑡4𝑑 ), forming a tile hierarchy3. Each
tile has a range on the longitude and latitude attributes, contains
the data points within that range and keeps an aggregate value (e.g.,
average rating) for the containing set.

Index Initialization. Initially, a “crude”, lightweight initial version
of the index is built, and progressively adjusts itself to the user
interactions, by splitting the tiles visited into more fine-grained ones.

Index Adaptation. In what follows, we outline the index adaptation
used for exact query answering. RawVis employs a progressive in-
dex adaptation technique that attempts to reduce the I/O operations
and computations by adjusting the index based on the user interac-
tions, e.g., exploration areas and required statistics. Adaptation is
performed by modifying the structure of the index (e.g., tile size);
and by enriching and updating its “information” (e.g., metadata).
2Compared to VALINOR, the VETI index combines tiles with tree structures enabling
categorical-based aggregations, and supports resource-aware index management.
3For simplicity here we present equally sized tiles.

The adaptation method incrementally splits the tiles that overlap
with a query into smaller subtiles. The splitting process considers
factors related to I/O cost in order to decide whether to perform a
split or not. Considering the locality-based characteristics of the ex-
ploration scenarios, tile splitting increases the likelihood that a future
query will fully overlap a tile in the area, which the user exploration
focuses on. The case of fully overlapped tiles allows the index to use
the existing metadata, improving the query performance by reducing
I/O operations on the file. In conjunction with the tile splitting, the
index may be enriched by computing different metadata.

Figure 1 (b) shows the index adaptation when query 𝑄 is posed.
The tiles 𝑡1 and 𝑡3 that overlap with 𝑄 are split to 2 × 2 subtiles.
Note, for simplicity, we assume that there is no need to further split
𝑡4𝑎∼𝑡4𝑑 subtiles. So, in this case we have to reorganize the objects
included in 𝑡1 and 𝑡3 tiles, and compute the metadata for each subtile.

3 PARTIAL INDEX ADAPTATION FOR
APPROXIMATE QUERY ANSWERING

Our goal is to support approximate query evaluation over the index,
reducing the cost of reading raw data from the file and the cost of
adapting the index while ensuring that the results’ accuracy meets a
given constraint. While leveraging the index structure and the aggre-
gate metadata can significantly reduce file accesses (i.e., execution
time), there are cases such as the initialization phase and dense areas,
where query execution exhibits lower performance.

The performance in the aforementioned cases become even more
challenging when the user’s exploratory queries involve attributes
that are not directly stored in the index. Recall that, the index stores
the axis attributes (e.g., longitude, latitude) used in 2D visual ex-
plorations. This enables efficiently determining which objects fall
within the query window without direct access to the raw data file.
However, queries involving analytic functions that utilize attributes
not directly indexed (e.g., aggregating non-axis attributes) may ne-
cessitate file access to compute exact results.

The cases of exact and approximate query processing are illus-
trated in Figure 1. We assume that the index is already initialized.
Figure 1(a) depicts the index before the query 𝑄 is posed, whereas
Figure 1(b) and (c) depict the updated index after 𝑄 evaluation with
100% accuracy and the approximate case, respectively. Assume that
the query 𝑄 requests an aggregate function (e.g., average rating of
the hotels) to be computed over all objects within 𝑄 range.

Index Adaptation for Exact Query Answering Example. First,
we identify the tiles that overlap with the query, i.e., 𝑡1, 𝑡2, 𝑡3, and
𝑡4𝑎 ∼ 𝑡4𝑑 . Next, we identify which of the overlapped tiles require
file access. Tiles 𝑡2 and 𝑡4𝑏 ∼ 𝑡4𝑑 are skipped, as they do not include
any of the selected objects. Tile 𝑡4𝑎 contains objects, but it is fully
contained in the query and, its indexed metadata can be used to
compute the aggregates requested for 𝑄 , without additional data
access.

However, tiles 𝑡1 and 𝑡3 are partially contained in the query, i.e.,
their metadata concerns the entire tile and not an aggregate value
for the specific selected objects requested for 𝑄 . Thus, we need to
read from the file the required attributes’ values of the objects in 𝑡1
and 𝑡3 that are within the query. This results in reading three objects.
Simultaneously, we split the tiles into four sub-tiles and compute
and store metadata for the newly created sub-tiles 𝑡1𝑑 and 𝑡3𝑏 .
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Figure 1: Index Adaptation Example (a) Initial index structure; (b) Exact query answering, splitting tiles 𝑡1 and 𝑡3; (c) Approximate
query answering, splitting only 𝑡3 and providing results within user accuracy constraints

3.1 Approach Overview
In this section we provide some basic concepts and the problem
definition.
Query Confidence Interval. A key aspect is that for the partially
contained tiles, we can compute (without accessing the file) the
number of objects within the window query via the objects axis
values stored in the index. Using the number of objects (count) along
with the sum, min, and max aggregate metadata stored in each tile,
we can deterministically bound the aggregate value of the objects
in the query. This allows us to establish a query confidence interval
and guarantee that the actual aggregate value falls within it. Based
on that, we can approximate various aggregate functions, such as
sum, mean, min and max.

For example, assume that we wish to compute the query con-
fidence interval for the sum function over a non-axis attribute 𝐴

for the objects within the window query 𝑄 . In this case, the query
confidence interval for the sum function is calculated by using the
precomputed metadata of each tile (i.e., objects count, minimum
value, maximum value). Particularly, the query confidence interval
is defined as: 

∑︁
𝑡 ∈T𝑓

sum𝐴 (𝑡 ) +
∑︁
𝑡 ∈T𝑝

count(𝑡 ∩𝑄 ) · min𝐴 (𝑡 ),

∑︁
𝑡 ∈T𝑓

sum𝐴 (𝑡 ) +
∑︁
𝑡 ∈T𝑝

count(𝑡 ∩𝑄 ) · max𝐴 (𝑡 )
 ,

where T𝑓 denote the fully-contained tile set and T𝑝 the partially-
contained tiles set; sum𝐴 (𝑡), min𝐴 (𝑡) and max𝐴 (𝑡) the sum, the
minimum and the maximum value of the attribute 𝐴 in tile 𝑡 , respec-
tively; and count(𝑡 ∩𝑄) the number of objects inside the tile 𝑡 that
are selected by the query 𝑄 .

This computation can be generalized to the mean, min and max.
For the mean, the confidence interval is determined by dividing the
sum query confidence interval by the total count of objects included
in the query. For the min and max aggregates, the query confidence
interval is derived by considering the fully contained tiles’ min or
max values respectively and bounding the partially contained tiles’
values within their min-max range.

Tile Confidence Interval. Following a similar approach as the
query confidence interval, confidence intervals can be computed
for partially-contained tiles. For example, for the sum aggregate
function, given a query 𝑄 , a partially-contained tile 𝑡 and a non-axis
attribute 𝐴, the tile confidence interval for the sum over 𝐴 is defined
as: [count(𝑡 ∩𝑄) · min𝐴 (𝑡), count(𝑡 ∩𝑄) · max𝐴 (𝑡)].

Approximate Value For an aggregate function included in the query,
we compute an approximate value using: (1) the exact values from

the query’s fully contained tiles; and (2) approximate values from the
query’s partially contained tiles. For the partially contained tiles, the
approximate values are derived using the tile’s aggregate metadata.
For example, the approximate value for the sum function is computed
by multiplying each partially contained tile’s mean value (derived
from its min and max values) with the count of objects within the
query range in that tile.
Upper Error Bound. By considering query confidence interval,
we derive a relative upper error bound. The upper error bound is
computed by normalizing the maximum difference between the ap-
proximate value computed and the query confidence interval bounds.

Problem Definition. Recall that, splitting is performed over the
tiles that are partially contained within the query. When a split is
performed we have to read from file the objects included in the
partially contained tile and compute tile’s metadata.

Let T be the set of query’s partially contained tiles. Let process(𝑡)
be a function, which processes a partially contained tile 𝑡 ∈ T , i.e.,
splits the tile, reorganizes the objects in the subtiles, reads from
the file the values of the objects included in 𝑡 , and computes the
metadata of each subtile. Let process(𝑡).𝑐𝑜𝑠𝑡 be the time required
to process the tile 𝑡 .

Finally, error_bound(T ,T ′) denote the upper error bound be-
tween the query answers resulting from processing all the partially
contained tiles T (exact answer) and a subset T ′ ⊆ T (approximate
answer).

Given the set of query’s partially contained titles T , our problem
is to find a set T ′ ⊆ T such that the cost of processing the tiles
T ′ is minimized, and the answer error bound is lower or equal to a
user-specified accuracy constraint 𝜙 . Formally:

argmin
T′

T′⊆T

∑
∀𝑡 ∈T′

process(𝑡 ) .𝑐𝑜𝑠𝑡 s.t. error_bound(T, T′ ) ≤ 𝜙

Processing Partially Contained Tiles. In order to find the subset
of partially contained tiles which will process, we use the following
simple approximation method.

For each partially contained tile 𝑡 ∈ T we compute a score
𝑠 (𝑡) that combines factors related to accuracy and processing cost.
Particularly, for each 𝑡 we consider: (1) the width of the tile con-
fidence interval 𝑤 (𝑡), that formulates the "degree of inaccuracy"
of 𝑡 . Note that, tiles with wider confidence intervals are consid-
ered more inaccurate; and (2) count(𝑡 ∩ 𝑄) that is the number of
objects inside 𝑡 that are selected by the query 𝑄 , that formulates
the processing cost. Formally, the score 𝑠 (𝑡) of a tile 𝑡 is defined
as: 𝑠 (𝑡) = 𝛼 ·𝑤 (𝑡) + (1 − 𝛼)/count(𝑡 ∩𝑄), where 𝛼 ∈ [0, 1] formu-
lates the trade-off between the two metrics. Note that, 𝑤 (𝑡) and
count(𝑡 ∩𝑄) are normalized to [0, 1].



We define a tiles selection policy that prioritizes the process of
the tiles from T with the largest scores, progressively refining our
results until they meet the user-specified accuracy constraint. So, the
processed tiles correspond to tiles set T ′.

For example, in Figure 1(c) we depict a partially adapted index
after evaluating the query 𝑄 . We have two partially contained tiles
that include objects selected by the query, i.e., 𝑡1 and 𝑡3 Assume
that the tile 𝑡3 has larger score than 𝑡1 So, we first process 𝑡3, i.e.,
perform a splitting and we read from file the objects within tile. Then,
if the estimated value for the query falls within the user-defined error
bounds, there is no need to access the file for the objects in the tile
𝑡1. So, the process of 𝑡1 is avoided.

4 PRELIMINARY EVALUATION
In this section, we present a preliminary evaluation focusing on re-
sponse time improvements achieved through partial index adaptation
under different accuracy constraints. We used a sequence of queries
and measured the evaluation time under 1% and 5% accuracy con-
straints compared to the exact query answering method. We used
the synthetic dataset from [3, 11] with 10 numeric columns (11 GB).
Each query, defined over two numeric attributes, specifies a window
containing approximately 100K objects and is shifted 10∼20% ran-
domly to simulate a map-based exploration path. Finally, the score
𝑠 for each tile used by the tile selection policy considers only the
width of the tile confidence interval, i.e., 𝛼 = 1.

Figure 2 illustrates the evaluation times for a sequence of 50
overlapping queries. The black line represents the evaluation time
for exact query answering, while the red and green lines represent
the evaluation times for 1% and 5% max error bounds, respectively.
The peaks in the evaluation times can be attributed to the exploration
of previously unvisited areas, where the index is less refined.

The results indicate that our partial index adaptation approach
can reduce query evaluation times, especially in the early stages of
user interaction. The trade-off between accuracy and performance is
evident, with higher accuracy constraints leading to slightly longer
evaluation times but still outperforming the exact method.

The evaluation times closely follow the number of objects (i.e.,
CSV file rows) that need to be read from the raw data file. In the ap-
proximate cases, we can skip reading objects for some tiles partially
overlapping the window query, while utilizing their aggregate meta-
data to bound their confidence interval. This is particularly effective
for the first 20 queries where only a "crude" version of the index is
available. As the index adapts for the exact evaluation scenario, the
queries become comparable or slightly faster than the approximate
ones because the index has been substantially adapted in the areas
explored by the user, reducing the need to access the raw data file
repeatedly. In contrast, the approximate cases may result in less
efficient query evaluation as the index is not as thoroughly adapted.

Overall, the results seem promising, with most queries being
evaluated faster for the approximate cases, especially in the first
queries of the exploration scenario. For example, at query 20, the 5%
accuracy method performs considerable well, being 4× faster than
the exact method, while the 1% accuracy method is about twice as
fast. However, in some queries, the approximate methods can result
in higher evaluation times because the exact method has progres-
sively refined the index more, allowing for quicker evaluations. This
uncommon behavior highlights the trade-off between partial and full
index adaptation, which we aim to improve by developing advanced
tile selection policies and enabling more index adaptation even if the
accuracy constraints have been satisfied. Overall, considering the
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whole exploration scenario, the 5% and 1% methods are about 40%
and 30% faster, respectively.
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